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What is Carbon Monitor? 

Carbon Monitor is a frequently-updated daily CO2 emission dataset, to monitor the variations of 

CO2 emissions from fossil fuel combustion and cement production since January 1st 2019 at 

national level with near-global coverage. Daily CO2 emissions are estimated from a diverse range 

of activity data, including: hourly to daily electrical power generation data of 29 countries, 

monthly production data and production indices of industry processes of 62 countries/regions, 

daily mobility data and mobility indices of road transportation of 416 cities worldwide. Individual 

flight location data and monthly data were utilised for aviation and maritime transportation sectors 

estimates. In addition, monthly fuel consumption data that corrected for daily air temperature of 

206 countries were used for estimating the emissions from commercial and residential buildings. 

Carbon Monitor data show the dynamic nature of CO2 emissions through daily, weekly and 

seasonal variations as influenced by workdays and holidays, as well as the unfolding impacts of 

the COVID-19 pandemics. Carbon Monitor hows a 7.8% decline of CO2 emission globally from 

Jan 1st to Apr 30th in 2020 when compared with the same period in 2019, and detects a re-growth 

of CO2 emissions by late April mainly attributed to the recovery of economy activities in China 

and partial easing of lockdowns in other countries. 
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Background  

The main cause of global climate change is the anthropogenic emission of CO2 to the 

atmosphere from geological carbon reservoirs, namely fossil fuel burning and cement 

production. Dynamic information on those fossil CO2 emissions is critical for understanding 

the human forcing of climate change. Further, the combustion of fossil fuels emits short-lived 

pollutants such as SO2, NO2 and CO which affect air quality and climate. Therefore, 

information on CO2 emissions also allows a more accurate quantification od the emissions of 

those pollutants for air quality and climate studies1,2.  Estimates of fossil CO2 emissions2-8 rely 

on activity data (e.g., the amount of fuel burnt or energy produced) and emission factors (See 

Methods)9. The sources of these data are mainly national energy statistics, and organizations 

such as CDIAC, BP, EDGAR, IEA and GCP also produce estimates for different groups of 

countries or for all countries1,10-12. Fossil CO2 emissions are usually on an annual basis 

lagging the very year’s emissions by at least one year. 

The uncertainty associated with fossil CO2 emissions is smaller for large emitters or the 

globe, than that of emissions from co-emitted pollutants for which uncertain technological 

factors influence the ratio of emitted pollutants to CO2 13-15. The uncertainty of global fossil 

CO2 emissions varies between ±6% and ±10%5,7,16,17 (±2σ), reflecting uncertain activity data 

and the emission factors. For activity data, the amount of fuel burnt is recorded by energy 

production and consumption statistics, hence uncertainties arise from errors and 

inconsistencies in reported figures from different sources. For emission factors, different fuel 

types, quality and combustion efficiency together contribute to the uncertainty. For example, 

coal used in China is of variable quality and so is its emission factors, both before (raw coal) 

and after cleaning (cleaned coal) varies, which was found to cause a 15% uncertainty range 

for CO2 emissions. On the other hand, there is limited temporal change of emission factors. 

For example, annual difference of emission factors for coal was within 2% globally18 while 

the variation of emission factors for oil and gas was found to be much smaller.  

Given the fact that uncertainty of fossil CO2 emissions production is in general < ±10%10,19,20, 

and the annual difference of emission factors is <  2%18, CO2 emissions during a few years 

period like Carbon Monitor can be estimated from absolute and relative change of activity 

through time, ignoring emissions factors changes. This method is used for updating changes 

of CO2 emissions1,21,22 23, understanding that official and comprehensive CO2 national 

inventories reported by countries to the UNFCCC only become available with a lag of two 

years for Annex-I countries and several years for non-Annex-I24. As such, a higher spatial, 

temporal and sectoral resolution of fossil CO2 emissions than annual and national level can be 

obtained by using spatial, temporal and sectoral activity data to disaggregate annual national 

emissions9,14,23,25. The level of granularity depends on available data, such as location and 

operations of point sources23 (i.e. power generation for a given plant), regional statistics of 

energy use (i.e. monthly fuel consumption) 9,25, and knowledge of proxies for the distribution 

of emissions such as population density, night lights, urban forms and GDP data …9,14,23,25. 
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Overview of Carbon Monitor daily CO2 emissions production chain 

Gaining from past experiences of constructing annual inventories and newly compiled activity 

data, Carbon Monitor is a novel daily dataset of CO2 emissions from fossil fuel burning and 

cement production at national level. The countries/regions include China, India, U.S., Europe 

(EU27 & UK), Russia, Japan, Brazil, and rest of world (ROW), as well as the emissions from 

international bunker fuels from ships and aircraft. This dataset, known as Carbon Monitor, is 

separated into several key emission sectors: power sector (39% of total emissions), industrial 

production (28%), ground transport (18%), air transport (3%), ship transport (2%), and 

residential consumption (10 %). For the first time, daily emissions estimates are produced for 

these six sectors, based on dynamically and regularly updated activity data. This is made 

possible by the availability of recent activity data such as hourly electrical power generation, 

traffic indices, airplane locations and natural gas distribution, with the assumption that the 

daily variation of emissions is driven by the activity data and that the contribution from 

emission factors is negligible, as they evolve at longer time scales, e.g. from policy 

implementation and technology shifts.   

The framework of this study is illustrated in Fig 1. We calculated national CO2 emissions and 

international aviation and shipping emissions since the Jan 1st 2019, drawing on hourly 

datasets of electricity power production and their CO2 emissions in 29 countries (thus 

including the substantial variations in carbon intensity associated with the variable mix of 

electricity production), daily vehicle traffic indices in 416 cities worldwide, monthly 

production data for cement, steel and other energy intensive industrial products in 62 

countries/regions, daily maritime and aircraft transportation activity data, and either previous-

year fuel use data corrected for air temperature to residential and the commercial buildings. 

Together, these data cover almost all fossil fuels and industry sources of global CO2 

emissions, except for the emission from land use change (up to 10% of global CO2 emissions) 

and non-fossil fuel CO2 emissions of industrial products (up to 2% of global CO2 emissions)26 

in addition to cement and clinker (i.e. plate glass, ammonia, calcium carbide, soda ash, 

ethylene, ferroalloys, alumina, lead and zinc etc.).  

While daily emission can be directly calculated using near-real-time activity data and 

emission factors for the electricity power sector, such an approach is difficult to apply to all 

sectors. For the industry sector, emissions can be estimated monthly in some countries. For 

the other sectors, we used proxy data instead of daily real activity data, to dynamically 

downscale the annual or monthly CO2 emissions totals on a daily basis. For instance, traffic 

indices in cities representative of each country were used instead of actual vehicle counts and 

categories, combined with annual national total sectoral emissions, to produce daily road 

transportation emissions. As such, for the road transportation, air transportation and 

residential use of fuels sectors in most countries, we downscaled monthly or annual total 

emission data in 2019 to calculate the daily CO2 emission in the very year. Subsequently, we 

scaled monthly totals of 2019 by daily proxies of activities to obtain daily CO2 emissions data 
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in the first four months of 2020, during the unprecedented disturbance of the COVID-19 

pandemic. The Carbon Monitor near-real-time CO2 emission dataset shows a 7.8% decline of 

CO2 emission globally from January 1st to April 30th in 2020 when compared with the same 

period in 2019, and detects a re-growth of CO2 emissions by late April which are mainly 

attributed to the recovery of economy activities in China and partial easing of lockdowns in 

other countries.  

 

Fig 1. Overview of Carbon Monitor data production chain 
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Annual total / sectorial emission per country for baseline year 2019 

According to the IPCC Guidelines for emission reporting4, the CO2 emissions 𝐸𝑚𝑖𝑠 

should be calculated by multiplying activity data 𝐴𝐷 by corresponding emission 

factors 𝐸𝐹. 

 𝐸𝑚𝑖𝑠 = ∑ ∑ ∑ 𝐴𝐷𝑖,𝑗,𝑘 ∙ 𝐸𝐹𝑖,𝑗,𝑘 (1) 

 

Where 𝑖, 𝑗, 𝑘  are indices for regions, sectors and fuel types respectively. 𝐸𝐹 can be further 

separated into the net heating values 𝑣 for each fuel type (the energy obtained per unit of 

fuel), the carbon content 𝑐 per energy output (t C/TJ) and the oxidization rate 𝑜 (the fraction 

(in %) of fuel oxidized during combustion): 

  

𝐸𝑚𝑖𝑠 = ∑ ∑ ∑ 𝐴𝐷𝑖,𝑗,𝑘 ∙ (𝑣𝑖,𝑗,𝑘 ∙ 𝑐𝑖,𝑗,𝑘 ∙ 𝑜𝑖,𝑗,𝑘) 

(2) 

 

Due to the lag of more than two years in publishing governmental energy statistics, we started 

from the latest CO2 emissions estimates up to 2018 from current CO2 databases1,10-12. For 

2019, we completed this information to obtain annual total emissions based on literature data 

and disaggregated the annual total into daily emissions (see below). For 2020, we estimated 

daily CO2 emissions by using daily changes of activity data in 2020 compared to 2019.  The 

CO2 emissions and sectoral structure in 2018 for countries and regions were extracted from 

EDGAR V4.3.21,27 and V5.0 for each country, and national emissions were scaled to the year 

2019 based on our own estimate (for China) and data from the Global Carbon Budget 201921 

(for other countries): 

 

 𝐸𝑚𝑖𝑠𝑟,2019 = 𝛼𝑟 ∙  𝐸𝑚𝑖𝑠𝑟,2018 (3) 

 

For China, we firstly calculated CO2 emissions in 2018 based on the energy consumption by 

fuel types and cement production in 2018 from China Energy Statistical Yearbook28 and the 

National Bureau Statistics29 following Equation 1. We projected the energy consumption in 

2019 from the annual growth rates of coal, oil and gas reported by Statistical Communiqué29 

and applied China-specific emission factors30 to obtain the annual growth rate of emissions in 

2019. For US and Europe (EU27&UK), we used updated emission growth rates in 2019 

published by CarbonBrief (https://www.carbonbrief.org/guest-post-why-chinas-co2-

emissions-grew-less-than-feared-in-2019). For countries with no estimates of emission growth 

rates in 2019 such as Russia, Japan and Brazil, we assumed their growth rates of emissions 

was 0.5% based on the emission growth rate of the rest of world22.  
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In this study, the EDGAR sectors were aggregated into four sectors (𝑠): power sector, industry 

sector, transport sector (ground transport, aviation and shipping), and residential sector. This 

is consistent with the new activity data we used below to compute daily variations. We used 

the sectoral distribution in 2018 from EDGAR to infer the sectoral emissions in 2019 for each 

country/region  (Equation 4), assuming that the sectoral distribution remained unchanged in 

these two years. 

 

 
𝐸𝑚𝑖𝑠𝑟,𝑠,2019 = 𝐸𝑚𝑖𝑠𝑟,2019 ∙

𝐸𝑚𝑖𝑠𝑟,𝑠,2018

𝐸𝑚𝑖𝑠𝑟,2018
 

(4) 

 

Table 1 Scaling factors for the annual emission change in 2019 compared to 2018 

Countries/Regions Scaling Factor (%) Source 

China 2.8% Estimated in this study 

India 1.8% Global Carbon Budget 201922 

US 2.4% Carbon Brief, 2020 

EU27&UK -3.9% Carbon Brief, 2020 

Russia 0.5% = ROW 

Japan 0.5% = ROW 

Brazil 0.5% = ROW 

ROW 0.5% Global Carbon Budget 201922 

 

According to IPCC Guidelines4, CO2 emissions for each sector should be calculated by 

multiplying sectoral activity data  by their corresponding emission factors  following 

Equation 5: 

 𝐸𝑚𝑖𝑠𝑠 = 𝐴𝐷𝑠 ∙ 𝐸𝐹𝑠 (5) 

 

The emissions were here calculated following this equation separately for the power sector, 

the industry sector, the transport sector, and the residential sector, as explained in the 

following. 
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Daily power sector (electricity production) CO2 emissions 

The CO2 emissions from the power sector were calculated by adapting Equation 5 with sector 

specific activity data (i.e. electricity production/thermal electricity production) and 

corresponding emission factors (Equation 6). 

 

 𝐸𝑚𝑖𝑠𝑝𝑜𝑤𝑒𝑟 = 𝐴𝐷𝑝𝑜𝑤𝑒𝑟 ∙ 𝐸𝐹𝑝𝑜𝑤𝑒𝑟 (6) 

 

Normally the emission factors change slightly over time but can be assumed to remain 

constant over the two years period considered in this study, compared to the huge changes in 

activity data. Thus, we assumed that emission factors remained unchanged in 2019 and 2020, 

and calculated the daily emissions as follows: 

 

 
𝐸𝑚𝑖𝑠𝑑𝑎𝑖𝑙𝑦 = 𝐸𝑚𝑖𝑠𝑦𝑒𝑎𝑟𝑙𝑦 ∙

𝐴𝐷𝑑𝑎𝑖𝑙𝑦

𝐴𝐷𝑦𝑒𝑎𝑟𝑙𝑦
 

(7) 

 

The data sources of daily activity data in power sector are described as Table 2. The 

countries/regions listed in Table 2 account for more than 70% of the total CO2 emissions in 

the power sector. For emissions from other countries (ROW), which are not listed in Table 2, 

we estimated the power sector emission changes in 2020 based on the period of the national 

lock-down. For daily emission changes of ROW in 2019, we firstly assumed a linear 

relationship between daily global emission and daily total emissions of the ROW countries 

listed in Table 2. Then we classified each country according to whether they adopted lock-

down measures, based on official reports. Based on daily emission data of the power sector of 

the countries listed in Table 2, we calculated the respective average change rates of power 

sectors in ROW countries between January and April, assuming changes started since the date 

of lock-down in each country. Emissions from countries with no lock-down were left 

unchanged. We then applied these country-specific January to April emissions growth rates to 

estimate daily changes for each ROW country in 2020, based on their lock-down measures, 

and aggregated them into daily emission for ROW. 
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Table 2 Data sources of activity data for estimating power sector emissions 

Country/Region Data source Sectors included Resolution 

China National Grid Daily Electric Load Thermal production Daily 

India 

Power System Operation Corporation 

Limited (https://posoco.in/reports/daily-

reports/) 

Thermal production 

(summarizing the 

production of Coal, 

Lignite, and Gas, 

Naphtha & Diesel) 

Daily 

US 

Energy Information Administration’s 

(EIA) Hourly Electric Grid Monitor 

(https://www.eia.gov/beta/electricity/grid

monitor/) 

Thermal production 

(summarizing the 

production of Coal, 

Petroleum, and Natural 

Gas) 

Hourly 

EU27 & UK 

ENTSO-E Transparent platform 

(https://transparency.entsoe.eu/dashboard

/show) 

Thermal production 

(summarizing the 

production of 

Fossil.Brown.coal.Lign

ite, 

Fossil.Coal.derived.gas

, Fossil.Gas, 

Fossil.Hard.coal,  

Fossil.Oil, 

Fossil.Oil.shale, and 

Fossil.Peat.) 

Croatia, 

Cyprus, 

Ireland, 

Luxembourg 

and Malta 

excluded due to 

unsatisfactory 

data quality or 

missing data 

Russia 
United Power System of Russia 

(http://www.so-ups.ru/index.php)  
Total generation Hourly 

Japan 

Summarizing electricity data from 10 

electricity providers in Japan (Hokkaido 

Electric Power, Tohoku Electric Power 

Network, Tokyo Electric Power 

Company, Chubu Electric Power Grid, 

Hokuriku Electric Power Transmission & 

Distribution Company, Kansai Electric 

Power, Chugoku Electric Power 

Company, Shikoku Electric Power 

Company, Kyushu Electric Power and 

Okinawa Electric Power Company). 

Total generation Hourly 

Brazil 
Operator of the National Electricity 

System (http://www.ons.org.br/Paginas/). 
Thermal production Hourly 

 

  

http://www.eia.gov/beta/electricity/gridmonitor/)
http://www.ons.org.br/Paginas/)
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Daily industrial production and cement production CO2 emissions  

While daily production data is not directly available for industrial and cement production, the 

monthly CO2 emissions from industry and cement production sector could be calculated by 

using monthly statistics of industrial production, and daily data of electricity generation to 

disaggregate the monthly CO2 emissions into daily values. This calculation assumes a linear 

relationship between daily electricity generation for industry and daily industry production 

data to compute daily industry production. 

The emissions from industrial production during the fossil fuel combustion were calculated 

by multiplying activity data (i.e., fossil fuel consumption data in the industrial sector) by 

corresponding emission factors by type of fuel. Due to limited data availability, we assumed a 

linear relationship between daily industrial production and industrial fossil fuel use, and the 

emission factors remaining unchanged. So, the monthly emissions in 2019 in country/region  

could be calculated by following equation: 

 

 𝐸𝑚𝑖𝑠𝑚𝑜𝑛𝑡𝑙𝑦,2019,𝑟 = 𝐸𝑚𝑖𝑠𝑦𝑒𝑎𝑟𝑙𝑦,2019,𝑟 ∙ (𝑃𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑟 𝑃𝑦𝑒𝑎𝑟𝑙𝑦,2019,𝑖,𝑟⁄ ) (8) 

 

Emissions from cement production during the chemical process of calcination of calcite were 

calculated with the same Eq.(8), which is normally used by multiplying the cement 

production by the emission factor of this industry. 

 

Specifically, for China, the emissions from the industry sector were further divided into steel 

industry, cement industry, chemical industry, and other industries (indicated by index 𝑖): 

 

 𝐸𝑚𝑖𝑠𝑚𝑜𝑛𝑡𝑙𝑦,2019,𝐶ℎ𝑖𝑛𝑎

= ∑ 𝐸𝑚𝑖𝑠𝑦𝑒𝑎𝑟𝑙𝑦,2019,𝑖 ∙ (𝑃𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑖 𝑃𝑦𝑒𝑎𝑟𝑙𝑦,2019,𝑖⁄ ) 

(9) 

 

For monthly emissions in 2020 in country/region , we used the following equation: 

 

 𝐸𝑚𝑖𝑠𝑚𝑜𝑛𝑡𝑙𝑦,2020,𝑟 = 𝐸𝑚𝑖𝑠𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑟 ∙ (𝑃𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2020,𝑟 𝑃𝑚𝑜𝑛𝑡ℎ𝑙𝑦,2019,𝑟⁄ ) (10) 

 

where 𝑃  is the industrial production in different industrial sectors (in China) or a total 

Industrial Production Index (in other countries) as listed in Table 3. In China’s case, the 

January and February estimates were combined as no individual monthly data was reported 

by sources listed in Table 3 for these two months. The monthly industrial emissions were 

disaggregated to daily emissions using daily electricity data, as explained above. 
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Lacking the latest Industrial Production Index in April 2020 for Europe, India, Japan, Russia 

and Brazil, we adopted monthly growth rates of industrial output from Trading Economics 

(https://tradingeconomics.com) based on preliminary survey data. For other countries not 

listed in Table 3, we used the same method as described for the power sector to calculate the 

daily industry emissions from ROW. 

To allocate monthly emissions into daily emissions, we used the weight of daily electricity 

production to monthly electricity production, as daily industry data were not available 

 𝐸𝑚𝑖𝑠𝑑𝑎𝑖𝑙𝑦 = 𝐸𝑚𝑖𝑠𝑚𝑜𝑛𝑡ℎ𝑙𝑦 ∙ (𝐸𝑙𝑒𝑐𝑑𝑎𝑖𝑙𝑦 𝐸𝑙𝑒𝑐𝑚𝑜𝑛𝑡ℎ𝑙𝑦⁄ ) (11) 
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Table 3 Data sources for industrial production  

Country/

Region 
Sector Data Data source 

China 

Steel 

industry 
Crude steel production 

World Steel Association website 

(https://www.worldsteel.org/) 

Cement 

Industry 
Cement and clinker production 

National Bureau of Statistics 

(http://www.stats.gov.cn/english/) 

Chemical 

industry 

sulfuric acid, caustic soda, soda ash, 

ethylene, chemical fertilizer, chemical 

pesticide, primary plastic and synthetic 

rubber 

National Bureau of Statistics 

(http://www.stats.gov.cn/english/) 

Other 

industry 

crude iron ore, phosphate ore, salt, feed, 

refined edible vegetable oil, fresh and 

frozen meat, milk products, liquor, soft 

drinks, wine, beer, tobaccos, yarn, 

cloth, silk and woven fabric, machine-

made paper and paperboards, plain 

glass, ten kinds of nonferrous metals, 

refined copper, lead, zinc, electrolyzed 

aluminum, industrial boilers, metal 

smelting equipment, and cement 

equipment 

National Bureau of Statistics 

(http://www.stats.gov.cn/english/) 

India / Industrial Production Index (IPI) 

Ministry of Statistics and 

Programme Implementation 

(http://www.mospi.nic.in) 

US / Industrial Production Index (IPI) 
Federal Reserve Board 

(https://www.federalreserve.gov) 

EU & 

UK 
/ Industrial Production Index (IPI) 

Eurostat 

(https://ec.europa.eu/eurostat/home) 

Russia / Industrial Production Index (IPI) 

Federal State Statistics Service 

(https://eng.gks.ru) 

Trading Economics 

(https://tradingeconomics.com) 

Japan / Industrial Production Index (IPI) 

Ministry of Economy, Trade and 

Industry 

(https://www.meti.go.jp) 

Trading Economics 

(https://tradingeconomics.com) 

Brazil / Industrial Production Index (IPI) 

Brazilian Institute of Geography and 

Statistics 

(https://www.ibge.gov.br/en/institut

ional/the-ibge.htm) 

Trading Economics 

(https://tradingeconomics.com) 

 

  

http://www.ibge.gov.br/en/institutional/the-ibge.htm)
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Daily road transportation CO2 emissions 

We collected hourly TomTom congestion level data from the TomTom website 

(https://www.tomtom.com/en_gb/traffic-index/). The congestion level (called 𝑋 hereafter) 

represents the extra time spent on a trip, in percentage, compared to uncongested condition. 

TomTom congestion level data were obtained for 416 cities across 57 countries at a temporal 

resolution of one hour. Of note that a zero-congestion level means that the traffic is fluid or 

‘normal’, but does not mean there was no vehicle and zero emissions. It is thus important to 

identify the lower threshold of emissions when the congestion level is zero. To do so, we 

compared the time series of daily mean TomTom congestion level 𝑋, with the daily mean car 

flux (called  hereafter in vehicle per day) from publicly available real-time 𝑄 data from an 

average of 60 roads in the Paris megacity. Those daily mean car counts were reported by the 

City’s service (https://opendata.paris.fr/pages/home/). We used a sigmoid function to fit the 

relationship between 𝑋 and 𝑄 (Fig 2): 

 

 𝑄 = 𝑎 +
𝑏𝑋𝑐

𝑑𝑐 + 𝑋𝑐
 (12) 

 

where a, b, c and d are the regression parameters (Table 4). We verified that the empirical fit 

from Eq. (12) can reproduce the observed large drop of 𝑄 due to the lockdown in Paris and 

the recovery afterwards. We assume that daily emissions relative changes were proportional 

to the relative change of the function 𝑄(𝑋) from Eq. (12). Then, we applied the 

function 𝑄(𝑋) established for Paris to other cities included in the TomTom dataset, assuming 

that the relative magnitude in car counts (and thus emissions) follow similar relationship with 

TomTom. The emission changes were first calculated for individual cities, and then weighted 

by city emissions to aggregate to national changes. For a specific country 𝑖 with 𝑛 cities 

reported by TomTom, the national daily vehicle flux  for day j was given by: 

 

 𝑄𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗 =
∑ 𝑄𝑖,𝑑𝑎𝑦𝑗𝐸𝑖

𝑛
𝑖=1

∑ 𝐸𝑖
𝑛
𝑖=1

 (13) 

 

Where is the annual road transportation emission of city n taken in the grid point of each 

TomTom city from the annual gridded EDGARv4.3.2 emission map for the “road 

transportation” sector (1A3b) (httpiis://edgar.jrc.ec.europa.eu/) for the year 2010, assuming 

that the spatial distribution of ground transport did not change significantly within a country 

between 2010 and the period of this study. Then, the daily road transportation emissions in 

2019 and 2020 (𝐸𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗) for a country were scaled such that the total road 

transportation emissions in the first four months of 2019 equaled to 121/365 times the annual 

https://edgar.jrc.ec.europa.eu/
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emissions of this sector in 2019 (𝐸𝑐𝑜𝑢𝑛𝑡𝑟𝑦,2019) estimated in this study： 

 

 𝐸𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗 = 𝑄𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗

121/365 × 𝐸𝑐𝑜𝑢𝑛𝑡𝑟𝑦,2019

∑ 𝑄𝑐𝑜𝑢𝑛𝑡𝑟𝑦,𝑑𝑎𝑦𝑗(2019)
121
𝑗=1

 (14) 

 

For countries not included in the TomTom dataset, we assumed that the emission changes 

follow the mean changes of other countries. For example, Cyprus, as an EU member country, 

had no city reported in TomTom dataset, so its relative emission change was assumed to 

follow the same pattern of the total emissions from other EU countries included in TomTom 

dataset (which covers 98% of EU total emissions). Similarly, the relative emission changes of 

countries in ROW but not reported by TomTom were assumed to follow the same pattern of 

the total emissions from all TomTom reported countries (which cover 85% of global total 

emissions).  

 

Fig 3 (a) Relationship between TomTom congestion level index (𝑋) and actual car 

counts (𝑄) for Paris. The sigmoid fit between 𝑋 and 𝑄 is given by the red line. (b) 

evaluation of the function 𝑄(𝑋) during the period of the lock down in Paris. 

 

 

 

Table 4 Regression parameters of the sigmoid function of Eq. (12) that describes the 

relationship between car counts (𝑄) and TomTom congestion level (𝑋) 

 

Parameter Value 

a 100.87 

b 671.06 

c 1.98 

d 6.49 
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Table 5 Cities (416 across 57 countries) with TomTom congestion level data  

 

Country/Region City 

Austria (5) Vienna, Salzburg, Graz, Innsbruck, Linz 

Belgium (10) 
Brussels, Antwerp, Namur, Leuven, Ghent, Liege, Kortrijk, Mons, Bruges, 

Charleroi 

Bulgaria (1) Sofia 

Czech (3) Brno, Prague, Ostrava 

Denmark (3) Copenhagen, Aarhus, Odense 

Estonia (1) Tallinn 

Finland (3) Helsinki, Turku, Tampere 

France (25) 
Paris, Marseille, Bordeaux, Nice, Grenoble, Lyon, Toulon, Toulouse, 

Montpellier, Nantes, Strasbourg, Lille, Clermont-Ferrand, Brest, Rennes, Rouen, 

Le-havre, Saint-Etienne, Nancy, Avignon, Orleans, Le-mans, Dijon, Reims, Tours 

Germany (26) 

Hamburg, Berlin, Nuremberg, Bremen, Stuttgart, Munich, Bonn, Frankfurt-am-

main, Dresden, Cologne, Wiesbaden, Ruhr-region-west, Leipzig, Hannover, Kiel, 

Freiburg, Dusseldorf, Karlsruhe, Ruhr-region-east, Munster, Augsburg, 

Monchengladbach, Mannheim, Bielefeld, Wuppertal, Kassel 

Greece (2) Athens, Thessaloniki 

Hungary (1) Budapest 

Iceland (1) Reykjavik 

Ireland (3) Dublin, Cork, Limerick 

Italy (25) 
Rome, Palermo, Messina, Genoa, Naples, Milan, Catania, Bari, Reggio-calabria, 

Bologna, Florence, Turin, Prato, Cagliari, Pescara, Livorno, Trieste, Verona, 

Taranto, Reggio-emilia, Ravenna, Padua, Parma, Modena, Brescia 

Latvia (1) Riga 

Lithuania (1) Vilnius 

Luxembourg (1) Luxembourg 

Netherlands (17) 
The-hague, Haarlem, Leiden, Arnhem, Amsterdam, Rotterdam, Nijmegen, 

Groningen, Eindhoven, Utrecht, Amersfoort, Tilburg, Breda, Apeldoorn, Zwolle, 

Den-bosch, Almere 

Norway (4) Oslo, Trondheim, Stavanger, Bergen 

Poland (12) 
Lodz, Krakow, Poznan, Warsaw, Wroclaw, Bydgoszcz, Gdansk-gdynia-sopot, 

Szczecin, Lublin, Bialystok, Bielsko-biala, Katowice-urban-area 

Portugal (5) Lisbon, Porto, Funchal, Braga, Coimbra 

Romania (1) Bucharest 

Russia (11) 
Moscow, Saint-petersburg, Novosibirsk, Yekaterinburg, Nizhny-novgorod, 

Samara, Rostov-on-don, Chelyabinsk, Omsk, Tomsk, Kazan 

Slovakia (2) Bratislava, Kosice 

Slovenia (1) Ljubljana 

Spain (25) 

Barcelona, Palma-de-mallorca, Granada, Madrid, Santa-cruz-de-tenerife, Seville, 

A-coruna, Valencia, Malaga, Murcia, Las-palmas, Alicante, Santander, 

Pamplona, Gijon, Cordoba, Zaragoza, Vitoria-gasteiz, Vigo, Cartagena, 

Valladolid, Bilbao, Oviedo, San-sebastian, Cadiz 

Sweden (4) Stockholm, Uppsala, Gothenburg, Malmo 

Switzerland (6) Geneva, Zurich, Lugano, Lausanne, Basel, Bern 

Turkey (10) 
Istanbul, Ankara, Izmir, Antalya, Bursa, Adana, Mersin, Gaziantep, Konya, 

Kayseri 

Ukraine (4) Kiev, Odessa, Kharkiv, Dnipro 

UK (25) 

Edinburgh, London, Bournemouth, Hull, Belfast, Brighton-and-hove, Bristol, 

Manchester, Leicester, Coventry, Nottingham, Cardiff, Birmingham, 

Southampton, Leeds-bradford, Liverpool, Sheffield, Swansea, Newcastle-

sunderland, Glasgow, Reading, Portsmouth, Stoke-on-trent, Preston, 

Middlesbrough 

Egypt (1) Cairo 

South Africa (6) Cape-town, Johannesburg, Pretoria, East-london, Durban, Bloemfontein 
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Table 5 (continued) Cities (416 across 57 countries) with TomTom level data  

Country/Region City 

China (22) 
Chongqing, Zhuhai, Guangzhou, Beijing, Chengdu, Changchun, Changsha, 

Shenzhen, Shenyang, Shanghai, Wuhan, Fuzhou, Shijiazhuang, Xiamen, Nanjing, 

Hangzhou, Tianjin, Ningbo, Quanzhou, Dongguan, Suzhou, Wuxi 

Hong Kong (1) Hong Kong 

India (4) Mumbai, New-delhi, Bangalore, Pune 

Indonesia (1) Jakarta 

Israel (1) Tel-aviv 

Japan (5) Tokyo, Osaka, Nagoya, Sapporo, Kobe 

Kuwait (1) Kuwait-city 

Malaysia (1) Kuala-lumpur 

Philippines (1) Manila 

Saudi Arabia (2) Riyadh, Jeddah 

Singapore (1) Singapore 

Taiwan (5) Kaohsiung, Taipei, Taichung, Tainan, Taoyuan 

Thailand (1) Bangkok 

United Arab 

Emirates (2) 
Dubai, Abu-dhabi 

Australia (10) 
Sydney, Melbourne, Brisbane, Adelaide, Gold-coast, Hobart, Newcastle, Perth, 

Canberra, Wollongong 

New Zealand (6) Auckland, Wellington, Hamilton, Christchurch, Dunedin, Tauranga 

Argentina (1) Buenos-aires 

Brazil (9) 
Recife, Sao-paulo, Rio-de-janeiro, Salvador, Fortaleza, Porto-alegre, Belo-

horizonte, Curitiba, Brasilia 

Chile (1) Santiago 

Columbia (1) Bogota 

Peru (1) Lima 

Canada (12) 
Vancouver, Toronto, Montreal, Ottawa, London, Winnipeg, Halifax, Quebec, 

Hamilton, Calgary, Edmonton, Kitchener-waterloo 

Mexico (1) Mexico-city 

USA (80) 

Los-angeles, New-york, San-francisco, San-jose, Seattle, Miami, Chicago, 

Washington, Honolulu, Atlanta, Baton-rouge, San-diego, Boston, Austin, 

Portland, Philadelphia, Sacramento, Houston, Riverside, Tampa, Nashville, 

Orlando, Charleston, Denver, Cape-coral-fort-myers, Pittsburgh, New-orleans, 

Las-vegas, Boise, Fresno, Baltimore, Tucson, Providence, Charlotte, Dallas-fort-

worth, Oxnard-thousand-oaks-ventura, Bakersfield, Greenville, Jacksonville, 

Detroit, Albuquerque, Columbus, San-antonio, Salt-lake-city, Phoenix, Mcallen, 

Raleigh, Virginia-beach, Hartford, Colorado-springs, Birmingham, New-haven, 

Louisville,     Minneapolis, Cincinnati, El-paso, Allentown, Buffalo, Memphis, 

Worcester, Grand-rapids, Albany, St-louis, Milwaukee, Omaha-council-bluffs, 

Indianapolis, Rochester, Columbia, Oklahoma-city, Cleveland, Tulsa, Kansas-

city, Knoxville, Richmond, Winston-salem, Dayton, Little-rock, Syracuse, Akron, 

Greensboro-high-point 
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Daily commercial aviation CO2 emissions 

We calculated CO2 emissions from commercial aviation following a commonly used 

approach: reconstructing the emission inventories from bottom up based on the knowledge of 

the parameters of individual flights. We collected the FlightRadar24 data 

(https://www.flightradar24.com/) for the departure and landing airports for each flight, the 

calculate the distance flown assuming the shortest distance for each flight, and then CO2 

emissions per flight31. Flights were grouped per country, and for each country between 

domestic or international traffic. The daily CO2 emission was computed as the product of 

distance flown, by a CO2 emission factor per km flown, according to: 

 

 𝐷𝑎𝑖𝑙𝑦 𝐸𝑚𝑖𝑠𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑎𝑖𝑙𝑦 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝐹𝑙𝑜𝑤𝑛𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2020 ×  𝐸𝐹𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2019 (14) 

 

We acquired monthly individual commercial flight information from FlightRadar24. 

Individual commercial flights are tracked by FlightRadar24 based on reception of ADS-B 

signals emitted by aircraft and received by their network of ADS-B receptors31.  

The 𝐷𝑎𝑖𝑙𝑦 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝐹𝑙𝑜𝑤𝑛 are computed assuming great circle distance between the take-

off, cruising, descent and landing points for each flight and are cumulated over all flights. As 

there is no sufficient data available to convert the FlightRadar24 database into CO2 emissions 

on a flight-by-flight basis, we computed CO2 emissions by assuming a constant CO2 emission 

factor per km flown across the whole fleet of aircraft (regional, narrowbody passenger, 

widebody passenger and freight operations). This assumption is justified if the mix of flights 

between these categories has not changed substantially between 2019 and 2020.  

 

 
𝐸𝐹𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2019 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑚𝑖𝑠 𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2018 × 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2018−2019

/𝑇𝑜𝑡𝑎𝑙 𝐸𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐾𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 𝐹𝑙𝑜𝑤𝑛 𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛 2019 (15) 

 

EDGAR published an estimate of total CO2 emissions from commercial aviation in 2018 of 

925 Mt CO2. And the International Council on Clean Transportation (ICCT) implied annual 

compound growth rate of total emissions from commercial flights, 5.7%, during the past five 

years from 2013 to 201832. In the absence of further information, we considered this increase 

to be representative of the emission growth rate of commercial aviation from 2018 to 2019. 

The FlightRadar24 database has incomplete data for some flights and may miss altogether a 

small fraction of actual flights31, so we scaled the EDGAR estimate of CO2 emissions 

(inflated by 5.7% for the year 2019) with the total estimated number of kilometers flown in 

2019 (67.91 million km) and apply this scaling factor to 2020 data. We assumed that the 

fraction of missed flights was the same in 2019 and 2020, which is reasonable. 
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Daily ship CO2 emissions  

We collected international CO2 ships emissions from 2016-2018 based on the EDGAR’s 

international emissions. We also. collected global shipping emissions during the period of 

2007-2015 from IMO33 and ICCT (https://theicct.org/sites/default/files/publications/Global-

shipping-GHG-emissions-2013-2015_ICCT-Report_17102017_vF.pdf). According to the 

Third IMO GHG Study33, CO2 emissions from international shipping accounted for 88% of 

global shipping emissions, domestic and fishing accounts for 8% and 4%, respectively. We 

calculated international CO2 shipping emissions from 2007-2015 from global shipping 

emissions and the ratio of international shipping and global shipping emissions. We 

extrapolated emissions from linear fits 2007-2018 to estimate the emissions in 2019. The data 

sources of shipping emissions are in Table 6. We obtained emissions for the first quarter of 

2019 based on the assumption the equal distribution of monthly shipping CO2 emissions. The 

equations are as follows: 

 

 
𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝐸𝑚𝑖𝑠𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔,2019

= 𝛼 ×  𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑚𝑖𝑠𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔,2019 × 𝑅𝑚𝑜𝑛𝑡ℎ (16) 

 

𝛼  is the increasing rate of international shipping emissions in 2019 based on the linear 

extrapolation of data from the period 2007-2018, estimated to be of 3.01%. 𝑅𝑚𝑜𝑛𝑡ℎ represents 

the ratio of the months to be calculated in the whole year. Given this, we estimated the 

shipping emissions for the first quarter of 2019, 𝑅𝑚𝑜𝑛𝑡ℎ equals 121/365. 

We assumed that the change in shipping emissions was linearly related to the change in ships. 

Traffic volume. The change of international shipping emissions for the first four months of 

2020 was calculated according to the following equation: 

 

 𝐸𝑚𝑖𝑠𝑝𝑒𝑟𝑖𝑜𝑑,2020 = 𝐸𝑚𝑖𝑠𝑝𝑒𝑟𝑖𝑜𝑑,2019 × 𝐶𝑖𝑛𝑑𝑒𝑥 (17) 

 

Where  represents the ratio of the change in shipping emissions,  estimated to the end of Apr 

by -15% compared to the same period of last year according to 

https://www.theedgemarkets.com/article/global-container-shipments-set-fall-30-next-few-

months. 

 

Table 6. Data sources used to estimate ship emissions 

 

Shipping Emissions Sources 

Global shipping Emissions (2007-2012) IMO33 

Global shipping Emissions (2013-2015) ICCT 

International shipping Emissions (2016-2018) EDGAR v5.0 
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Daily residential sector emissions (residential and commercial 

buildings) CO2 emissions 

Fuel consumption daily data from this sector are not available. Several studies (ref) showed 

that the main source of daily and monthly variability of this sector is climate, namely heating 

emissions increase when temperature falls below a threshold which depends on region, 

building types and people habits. We calculated emissions by assuming annual totals unchanged 

from 2019 and using climate daily climate information,  in three steps: 1) estimation of population-

weighted heating degree days for each country and for each day based on the ERA534 

reanalysis of 2-meters air temperature, 2) split residential emissions into two parts: cooking 

emissions and heating emissions according to the EDGAR database35, using the EDGAR estimates 

of 2018 residential emissions as the baseline. Emissions from cooking were assumed to remain 

independent of temperature, and those from heating were assumed to be a function of the 

heating demand. Based on the change of population-weighted heating degree days in each 

country in 2019 and 2020, we downscaled annual EDGAR 2018 residential emissions to daily 

values for 2019 and 2020 as described by Eq. 18-20:  

 

 𝐸𝑚𝑖𝑠𝑐,𝑚 = 𝐸𝑚𝑖𝑠𝑐,𝑚,2018 ×
∑ 𝐻𝐷𝐷𝑐,𝑑𝑚

∑ 𝐻𝐷𝐷𝑐,𝑑𝑚,2018
 (18) 

 

𝐸𝑚𝑖𝑠𝑐,𝑑 = 𝐸𝑚𝑖𝑠𝑐,𝑚 × 𝑅𝑎𝑡𝑖𝑜ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑐,𝑚 ×
𝐻𝐷𝐷𝑐,𝑑

∑ 𝐻𝐷𝐷𝑐,𝑑𝑚
+ 𝐸𝑚𝑖𝑠𝑐,𝑚 × (1

− 𝑅𝑎𝑡𝑖𝑜ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑐,𝑚) ×
1

𝑁𝑚
 

(19) 

 𝐻𝐷𝐷𝑐,𝑑 =
∑(𝑃𝑜𝑝𝑔𝑟𝑖𝑑 × (𝑇𝑔𝑟𝑖𝑑,𝑐,𝑑 − 18))

∑(𝑃𝑜𝑝𝑔𝑟𝑖𝑑)
 (20) 

 

where 𝑐 is country, 𝑑 is day, 𝑚 is month, 𝐸𝑚𝑖𝑠𝑐,𝑚 is the residential emissions of country 𝑐 in 

month 𝑚 of the year 2019 or 2020, 𝐸𝑚𝑖𝑠𝑐,𝑚,2018 is the emissions of country 𝑐 in month 𝑚 of 

the year 2018, 𝐻𝐷𝐷𝑐,𝑑 is the population-weighted heating degree day in country 𝑐 in day 𝑑, 

𝐸𝑚𝑖𝑠𝑐,𝑑 is the residential emissions of country 𝑐 in day 𝑑 of the year 2019 or 2020, 

𝑅𝑎𝑡𝑖𝑜ℎ𝑒𝑎𝑡𝑖𝑛𝑔,𝑐,𝑚 is the percentage of residential emissions from heating demand in country 𝑐 

in month 𝑚, 𝑁𝑚 is the number of days in month 𝑚, 𝑃𝑜𝑝𝑔𝑟𝑖𝑑 is gridded population data 

derived from Gridded Population of the World, Version 436, 𝑇 is the daily average air 

temperature at 2 meter derived from ERA534.  

The main assumption is this approach is that residential emissions did not change 

from other factors than heating degree days variations in 2020, when people time in 

houses dramatically increased during the lock-down period. In order to test the 

validity of this assumption, we compiled natural gas daily consumption data by 

residential and commercial buildings for France 
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(https://www.smart.grtgaz.com/fr/consommation) (unfortunately such data could not be 

collected in many countries) during 2019 and 2020. Natural gas consumption in kWh 

per day was transformed to CO2 emissions using an emission factor of 10.55 kWh per 

m3 and a molar volume of 22.4 10-3 m3 per mole. 

Firstly, we verified that the temporal variation of those ‘true’ residential CO2 

emissions was similar to that given by equations (18) to (20). Secondly, after fitting a 

piecewise model to those natural gas residential emission data using ERA5 air 

temperature data, we removed the effect of temperature to obtain an emission 

corrected for temperature effects. Even if the lock down was very strict in France, we 

found no significant emission anomaly, meaning that the fact that nearly the entire 

population was confined at home did not increase or decrease emissions. This 

complementary analysis tentatively suggests that residential emissions can be well 

approximated in other countries by equations (18) to (20) based only on temperature 

during the lock down period. 

 

Fig 4. Residential and commercial building daily natural gas consumption (linearly 

related to CO2 emissions from this sector) in France for the last 5 years. Temperature 

effects have been removed from emissions using a linear piecewise model. When the 

effect of variable winter temperature was accounted for, no significant change is seen 

in 2020 during the very strict lock-down period. 

 

 

 

  



 21 

Data Records and list of countries and groups of countries 

Currently there are 27484 data records provided in this dataset: 

- 268 records are daily mean CO2 emissions (from fossil fuel combustion and cement 

production process) 1751-2020. 

- 4374 records are the daily emissions for 9 countries or groups of countries as given in 

Table 7  (China, India, US, EU27&UK, Russia, Japan, Brazil, ROW and Globe) and 486 

days (from January 1st 2019 to April 30th 2020). 

- 22842 records are daily emissions in power sector, ground transport sector, industry 

sector, residential sector, aviation sector and international shipping sector respectively, 

for 9 countries/regions (China, India, US, EU27&UK, Russia, Japan, Brazil, ROW and 

Globe) and 486 days (from January 1st 2019 to April 30th 2020). 

 

Table 7. Countries or group of countries abbreviations used on the web site 

 

WLD World (all countries or groups of countries) 

CHN People’s Republic of China 

BRA Brazil 

EU28 European Union 27 in 2020 

FRA France 

DEU Germany 

IND India 

ITA Italy 

JPN Japan 

RUS Russia 

ESP Spain 

USA United Stares 

GBR United Kingdom 

ROW Rest of the World 
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Estimation of CO2 emissions uncertainties 

We followed the 2006 IPCC Guidelines for National Greenhouse Gas Inventories to conduct 

the uncertainty analysis of the data. 2-sigma uncertainties were calculated for each sector: 

Power sector: uncertainty is mainly from inter-annual variability of coal emission factors. 

Based the UN statistics the inter-annual variability of fossil fuel is within (±1.5%), which 

been used as uncertainty of the CO2 from power sectors. 

Industrial sector: uncertainty comes from the monthly production data. Given that CO2 

emissions from industry and cement production in China accounts for more than 60% of 

world total industrial CO2, and the fact that uncertainty of emission in China is t Uncertainty 

from monthly statistics was derived from 10000 Monte Carlo simulations to estimate a 68% 

confidence interval (1-sigma) for China. from monthly statistics was derived from 10000 

Monte Carlo simulations to estimate a 68% confidence interval (1-sigma) for China. We 

calculated the 68% prediction interval of linear regression models between emissions 

estimated from monthly statistics and official emissions obtained from annual statistics at the 

end of each year, to deduce the one-sigma uncertainty involved when using monthly data to 

represent the whole year’s change. The squared correlation coefficients are within the range 

of 0.88 (e.g., coal production) and 0.98 (e.g., energy import and export data), which represent 

that only using the monthly data can explain 88% to 98% of the whole year’s variation37, 

while the remaining variation not covered yet reflect the uncertainty caused by the frequent 

revisions of China’s statistical data after they are first published. 

Road Transportation: emissions from this sector is estimated by assuming that the relative 

magnitude in car counts (and thus emissions) follow the similar relationship with TomTom. 

Emissions 1-sigma uncertainties were quantified by the prediction interval of the regression. 

Commercial Aviation: Uncertainties in the aviation CO2 emissions are difficult to assess. 

Sources of uncertainties arise from the ICCT (2018) estimate used to scale emissions, the lack 

of completeness of the flight database and the fixed average conversion factor between 

kilometers flown and CO2 emissions. These last two uncertainties should have a limited 

impact as we do not expect a change between 2019 and 2020 in database completeness and in 

the average fleet composition. In the study 1-sigma uncertainty of aviation sector was 

approximated from the difference of daily emission data estimated based on the two methods. 

We calculated the average difference between the daily emission results estimated based on 

the flight route distance and the number of flights, and then divide the average difference by 

the average of the daily emissions estimated by the two methods to obtain the uncertainty of 

CO2 from aviation sector. 

Shipping: We used the uncertainty analysis from IMO as our uncertainty estimate for 

shipping emissions. According to Third IMO Greenhouse Gas study 201433, the uncertainty of 

shipping emissions was set to 13% based on this inventory. 
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Residential sector (commercial and residential buildings): The 2-sigma uncertainty in 

daily emissions are estimated as 20%, which is calculated based on the comparison with daily 

residential emissions derived from real fuel consumptions in several European countries 

including France, Great Britain, Italy, Belgium, and Spain. 

Global annual 2019 emissions: The 2-sigma uncertainty of emission projection in 2019 is 

estimated as 2.2%, by combining the reported uncertainty of the projected growth rates and 

the EDGAR estimates in 2018. 

Overall uncertainty: We combined all the uncertainties from each sector (Table 8) by 

following the error propagation equation from IPCC. Eq. (21) is used to derive for the 

uncertainty of the sum, which could be used to combine the uncertainties of all sectors: 

 

 
𝑈𝑡𝑜𝑡𝑎𝑙 =

√∑(𝑈𝑠 ∙ 𝜇𝑠)

|∑ 𝜇𝑠|
 

(21) 

 

Where 𝑈𝑠 and 𝜇𝑠 are the percentage uncertainties and the uncertain quantities (daily mean 

emissions) of sector 𝑠 respectively. Eq. (22) was used to derive for the uncertainty of the 

multiplication, which is used to combine the uncertainties of all sectors and of the projected 

emissions in 2019: 

 
𝑈𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = √∑ 𝑈𝑖

2 
(22) 

 

Table 8 Percentage 2-sigma uncertainties of all items. 

Items Uncertainty Range 

Power ±1.5% 

Ground Transport ±9.3% 

Industry ±36.0% 

Residential ±40.0% 

Aviation ±10.2% 

International Shipping ±13.0% 

Projection of emission growth rate 

in 2019 
±0.8% 

EDGAR emissions in 2018 ±5.0% 

Overall ±6.8% 
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Fair use data policy 

Carbon Monitor data are made freely available to the public and the scientific community in 

the belief that their wide dissemination will lead to greater understanding and new scientific 

insights. The availability of these data does not constitute publication of the data.  The data 

providers rely on the ethics and integrity  of the user to ensure that they receive fair credit for 

their work. If the data are obtained for potential use in a publication or presentation,  we 

kindly ask you to inform us at the outset of the nature of this work.   If the Carbon Monitor 

data are essential to the work, or if an important  result or conclusion depends on the Carbon 

Monitor data, co-authorship may be appropriate.  This should be discussed at an early stage in 

the work.  Manuscripts using the Carbon Monitor data should be sent  to for review before 

they are submitted for publication so we can ensure that the quality and limitations of the data 

are accurately represented.  Contacts about the data : zhuliu@tsinghua.edu.cn,  

philippe.ciais@lsce.ipsl.fr  or sjdavis@uci.edu . 

 

Disclaimer 

Carbon Monitor data are made freely available to the public with the above fair use open data 

policy. We encourage users to cite the data by https://arxiv.org/abs/2004.13614. Carbon 

Monitor is a living dataset subject to updates and the values are expected to change, as new 

data get included. In the process of updating our daily CO2 emission products, errors may be 

corrected, revisions may be made in the calculation methods, and new information may be 

used. Data files available for download and graphs are associated to a day of release. In case 

of questions regarding data and history previous releases, please contact us at 

contact.carbonmonitor@gmail.com.  All information displayed and provided can be used at 

the own responsibility of users, and does not engage any responsibility from research 

institutions supporting Carbon Monitor and partner institutions. 

 

Code Availability 

The code generated during and/or analyzed during the current study are available from the 

corresponding author. After peer-reviewed the code will be open accessible on the Carbon 

Monitor website (www.carbonmonitor.org or www.carbonmonitor.org.cn). 

  

mailto:zhuliu@tsinghua.edu.cn
mailto:philippe.ciais@lsce.ipsl.fr
mailto:sjdavis@uci.edu
https://arxiv.org/abs/2004.13614
mailto:contact.carbonmonitor@gmail.com
http://www.carbonmonitor.org/
http://www.carbonmonitor.org.cn/
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